Meio ambiente

Banco de dados acústicos permite detectar vazamento de gás no fundo do oceano é desenvolvido pelo RCGI

Redação/Assessoria Fapesp
18/02/2020 13:09
Banco de dados acústicos permite detectar vazamento de gás no fundo do oceano é desenvolvido pelo RCGI Imagem: Divulgação Visualizações: 1003 (0) (0) (0) (0)

Com o objetivo de fazer o monitoramento acústico de vazamentos de gases no fundo do oceano, a algumas dezenas de milhares de metros de profundidade, pesquisadores do Centro de Pesquisa para Inovação em Gás (RCGI) – um Centro de Pesquisa em Engenharia (CPE) constituído pela FAPESP e pela Shell – estão montando um banco de dados inédito na Escola Politécnica da Universidade de São Paulo (Poli-USP).

Divulgação

A coleção de dados acústicos, assim como os hardwares e softwares que estão em desenvolvimento para coleta e análise dos sons, está atrelada a outra iniciativa do centro de pesquisa voltada à análise da viabilidade de se construir cavernas nas camadas de rocha sobre o pré-sal. Essas cavernas seriam usadas para estocar dióxido de carbono (CO2) depois da separação do gás natural. A proposta é que o banco de dados gere subsídios para monitorar possíveis vazamentos de CO2 nesse tipo de reservatório (leia mais em agencia.fapesp.br/29037/).

O repositório é composto por material obtido em campo e em laboratório. Está em constante crescimento e, atualmente, totaliza aproximadamente 60 horas de gravação. Os pesquisadores registraram os sons das plumas de bolhas originadas por vazamentos de gases simulados debaixo d’água, em diversas vazões, pressões e locais.

“Vazamentos, geralmente, formam uma pluma de bolhas que faz barulho ao ser gerada sob a água. Nossa meta é conhecer a ‘assinatura’ dos ruídos dessas plumas para poder detectá-las, quantificá-las e diferenciá-las de outros tipos de ruído”, explicou, à Assessoria de Comunicação do RCGI, o professor Linilson Rodrigues Padovese, coordenador do projeto e também do Laboratório de Acústica e Meio Ambiente (Lacmam) do Departamento de Engenharia Mecânica da Poli-USP.

A equipe começou a coletar dados experimentais sobre vazamentos com o objetivo de validar os algoritmos de inteligência artificial desenvolvidos para a detecção desses fenômenos. “Fizemos simulações de vazamentos para obter os dados. Foram três saídas a campo, duas no mar e uma em uma represa, e conseguimos avançar bastante no banco de dados. Também usamos o tanque do laboratório instalado na Poli e, ainda, o tanque de mergulho do CEPE-USP [Centro de Práticas Esportivas da USP]. Já temos um bom banco de dados, com diferentes tamanhos de plumas de bolhas e para diferentes vazões.”

Para simular os vazamentos, os pesquisadores usaram um reservatório de ar comprimido e mangueiras, com instrumentação para controle da pressão e vazão do ar e com orifícios de saída de diferentes diâmetros. “Para cada som gravado, sabemos qual foi a vazão de ar. Quando simulávamos os vazamentos, já estipulávamos a vazão: por exemplo, um litro por minuto; 10 litros por minuto. Assim, sabemos a assinatura da pluma de cada vazão, para cada uma das vazões que estabelecemos. Ou seja: temos dados para estabelecer comparações.”

Novos desafios

De acordo com o professor da Poli-USP, a detecção do ruído das plumas de bolhas não é mais problema. “Já temos a certeza de que conseguimos detectar e diferenciar vazões de 2,5 a 10 litros por minuto em até 40 metros de profundidade. O desafio agora é ter um projeto-piloto para testar a metodologia, o software e o hardware em condições análogas às da aplicação desejada. Precisamos avaliar se as conclusões que tiramos até agora são aplicáveis em maiores profundidades.”

O engenheiro explica que tanto um vazamento quanto a passagem de um navio, por exemplo, podem alterar o background sonoro do fundo do mar. Só que o barulho do navio passa em poucos minutos, enquanto o vazamento permanece. Assim, conforme o tempo passa, aumenta a confiança de que aquele ruído pode, realmente, ser um vazamento.

“Creio mesmo que, em termos de análise dos ruídos, será mais fácil nas condições de profundidade das cavernas de sal, porque lá embaixo é mais silencioso. A 2 mil metros de profundidade o ruído acústico é mais homogêneo, ou seja, é mais fácil detectar algo que não deveria estar lá, como um vazamento. Quando fomos para o mar, fizemos os experimentos próximos do porto de Santos e ali tem tudo: draga, grandes navios entrando e barco de pescador passando. Portanto, acreditamos que, se conseguimos detectar um vazamento nessas condições, a grandes profundidades será ainda mais favorável.”

De acordo com Padovese, dificilmente um vazamento vai gerar apenas uma pluma de bolhas. “Provavelmente, teremos um conjunto de plumas, que faz um ruído maior. Diria que as condições em grandes profundidades serão mais favoráveis, embora, do ponto de vista do hardware usado para captação dos ruídos, mais exigentes. Mas isso é uma questão de engenharia.”

Estratégias de captação

O professor explica que, para monitorar cavernas de sal submarinas, uma opção de equipamento que o laboratório está desenvolvendo é um gravador autônomo, chamado por eles de OceanPod. Trata-se de um cilindro (de PVC, alumínio ou aço inox, dependendo da profundidade em que se vai colocá-lo) que contém um gravador, condicionadores de sinais, hidrofone e pilhas, permitindo autonomia de até seis meses. Segundo ele, a grande questão agora é quanto à “semeadura” dos equipamentos de captação de sons no solo marinho.

Não vamos trabalhar apenas com um OceanPod, mas semear uma área com alguns deles. Porque o vazamento pode percolar [atravessar] a estrutura geológica da caverna em qualquer ponto. Portanto, é preciso semear os equipamentos na área que suporta a caverna. Mas a distância entre um e outro equipamento é algo em que estamos trabalhando ainda. Um tem de estar no limite da cobertura do outro, para que não haja ponto cego.”

O pesquisador salienta que diversas estratégias de monitoramento são possíveis. A escolha deve ficar a cargo da equipe do projeto dedicada a conceber as cavernas de sal e estudar sua viabilidade.

Divulgação

 

Mais Lidas De Hoje
veja Também
Startups
NAVE ANP: inscrições prorrogadas até 22/11/2024
11/11/24
IBP
Na COP29, IBP reforça compromisso com transição energética
11/11/24
Petrobras
UPGN do Complexo de Energias Boaventura entra em operação
11/11/24
Internacional
Rússia começa a perder força na participação das importa...
11/11/24
Energia Eólica
Grupo CCR e Neoenergia firmam contrato de autoprodução d...
11/11/24
Etanol
Anidro e hidratado encerram a semana com pequena variaçã...
11/11/24
Resultado
Petrobras divulga lucro de R$ 32,6 bilhões no 3º trimes...
08/11/24
Energia elétrica
Desempenho em outubro é o melhor do ano e expansão da ge...
08/11/24
E&P
Firjan destaca o potencial para aumento no fator de recu...
08/11/24
Hidrogênio
Primeira planta de conversão de hidrogênio a partir do e...
08/11/24
ANP
NAVE ANP: inscrições prorrogadas até 22/11/2024
07/11/24
Telecomunicações Offshore
NexusWave: Conectividade Marítima Confiável e Sem Interr...
07/11/24
Pré-Sal
GeoStorage: Novo hub do RCGI nasce para viabilizar o arm...
07/11/24
Negócio
Grupo Energisa assume controle da Norgás e entra no seto...
07/11/24
Etanol
Cientistas mapeiam microbioma de usinas em busca de maio...
07/11/24
Metanol
ANP amplia monitoramento da comercialização de metanol c...
07/11/24
Oportunidade
PPSA realizará seu primeiro concurso público para contra...
07/11/24
GNV
Estratégias e desenvolvimento do setor de GNV proporcion...
07/11/24
Workshop
ANP realiza workshop virtual sobre revisão de normas par...
07/11/24
Marinha do Brasil
Grupo EDGE amplia parceria com a Marinha do Brasil para ...
06/11/24
Evento
Evento Drone em Faixas de Dutos tem nova data
06/11/24
VEJA MAIS
Newsletter TN

Fale Conosco

Utilizamos cookies para garantir que você tenha a melhor experiência em nosso site. Se você continuar a usar este site, assumiremos que você concorda com a nossa política de privacidade, termos de uso e cookies.

21