Tecnologia e Inovação

Brasil iniciará obras do acelerador de elétrons de terceira geração

Equipamento atenderá às mais diversas áreas da ciência.

Agência Fapesp
28/01/2013 13:26
Brasil iniciará obras do acelerador de elétrons de terceira geração Imagem: Projeto do Sírius Visualizações: 964 (0) (0) (0) (0)

 

Deve começar ainda este ano, no Laboratório Nacional de Luz Síncrotron (LNLS), em Campinas, a construção do novo acelerador de elétrons de terceira geração, batizado de Sirius.
Capaz de emitir radiação com maior brilho e gerar imagens com mais resolução que o atual, de segunda geração, o equipamento poderá atrair para o país cientistas de destaque no cenário internacional, como a israelense Ada Yonath - vencedora do Nobel de Química em 2009 por seu trabalho sobre a estrutura e a função dos ribossomos - ou o americano Brian Kobilka - premiado em 2012 pela descoberta de um novo receptor celular -, afirmou Antonio José Roque da Silva, diretor do LNLS.
“Será uma facilidade aberta que atenderá às mais diversas áreas da ciência, desde medicina, biofísica, biotecnologia, biologia molecular e estrutural, até paleontologia, ciências dos materiais, agricultura e nanotecnologia. Se o equipamento estiver realmente no estado da arte, vai atrair pesquisadores de ponta de todo o mundo”, disse.
Desde 1997, no LNLS, está aberto para uso em pesquisas externas um acelerador de elétrons de segunda geração. Atualmente, o laboratório está subordinado ao Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) e conta com 16 estações experimentais, também chamadas linhas de luz, que atendem em torno de 500 grupos de pesquisa por ano.
Uma parte dos equipamentos das estações experimentais foi adquirida durante projetos apoiados pela Fapesp, como a linha de luz para biologia molecular estrutural (MX2) e equipamentos para a linha do wiggler supercondutor.
Único na América Latina, o síncrotron é capaz de emitir radiação de alto brilho em diversas frequências, desde infravermelho até raios X. Isso permite estudar a estrutura atômica que compõe os mais diversos materiais e descobrir como se distribuem espacialmente e como estão interligados.
“Para entender a diferença entre os raios X emitidos por uma máquina comum usada na medicina e a radiação emitida pelo síncrotron, podemos comparar o feixe de luz de uma lanterna com o de uma ponteira a laser, que tem divergência muito menor”, explicou Roque da Silva.
De acordo com o diretor do LNLS, a mesma analogia pode ser usada para comparar o feixe de fótons emitido por um acelerador de segunda e um de terceira geração.
A energia final dos elétrons será mais do que o dobro da atual, que é de 1,37 GeV (gigaelétron-volt). Além de gerar mais intensidade de luz, o Sirius também ampliará sua faixa de alcance para os raios X duros (o penúltimo no espectro eletromagnético, atrás dos raios gama). Isso permitirá penetrar estruturas mais espessas.
“Hoje, ao estudar as propriedades do aço, por exemplo, só é possível penetrar na camada mais superficial do material. Com o novo acelerador conseguiríamos atingir de fato o volume e aprender como os átomos estão organizados”, contou Roque da Silva.
A menor divergência do feixe de fótons, por sua vez, aumentará a resolução das imagens, possibilitando a realização de medidas de microscopia com precisão nanométrica. “Será possível gerar imagens tridimensionais de uma célula e de suas organelas”, contou.
Na fronteira
Segundo o diretor do LNLS, em julho ficará pronto o projeto executivo do novo acelerador, que contém todas as informações de arquitetura e infraestrutura necessárias para o início das obras. Estão previstas a construção de até 40 estações experimentais - quase o triplo da capacidade atual.
“O projeto conceitual está concluído. Originalmente ele já era competitivo em relação aos outros síncrotrons de terceira geração, mas o comitê internacional de avaliadores nos desafiou a fazer um projeto ainda mais arrojado. Agora ele traz uma série de inovações que o colocam, de fato, na fronteira tecnológica”, afirmou Roque da Silva.
Enquanto os demais equipamentos do tipo usam o sistema de eletroímãs, o Sirius será inteiramente baseado no sistema de ímãs permanentes, o que reduz a necessidade de cabos de alimentação.
“Também fizemos mudanças drásticas na rede magnética e na câmara de vácuo. O feixe de luz do Sirius estará entre os de maior brilho no mundo”, afirmou Roque da Silva.
O custo previsto do projeto, estimado para terminar em 2016, é de R$ 650 milhões. Até o momento, segundo Roque da Silva, o Ministério de Ciência, Tecnologia e Inovação (MCTI) já investiu cerca de R$ 55 milhões.
“O MCTI considera o Sirius como um dos projetos prioritários para o país e o apoio tem sido crescente. Mas também estamos buscando outros parceiros”, contou Roque da Silva.
O projeto também conta com apoio do governo do estado de São Paulo, que se comprometeu a fazer a desapropriação do terreno de 150 mil metros quadrados onde será construído o acelerador - ao lado das atuais instalações do LNLS.
“A construção do Sirius será, sem dúvida, uma das ações mais importantes do ponto de vista da internacionalização da ciência. O poder de nucleação de um laboratório desse porte é enorme”, avaliou Roque da Silva.

Deve começar ainda este ano, no Laboratório Nacional de Luz Síncrotron (LNLS), em Campinas, a construção do novo acelerador de elétrons de terceira geração, batizado de Sirius.


Capaz de emitir radiação com maior brilho e gerar imagens com mais resolução que o atual, de segunda geração, o equipamento poderá atrair para o país cientistas de destaque no cenário internacional, como a israelense Ada Yonath - vencedora do Nobel de Química em 2009 por seu trabalho sobre a estrutura e a função dos ribossomos - ou o americano Brian Kobilka - premiado em 2012 pela descoberta de um novo receptor celular -, afirmou Antonio José Roque da Silva, diretor do LNLS.


“Será uma facilidade aberta que atenderá às mais diversas áreas da ciência, desde medicina, biofísica, biotecnologia, biologia molecular e estrutural, até paleontologia, ciências dos materiais, agricultura e nanotecnologia. Se o equipamento estiver realmente no estado da arte, vai atrair pesquisadores de ponta de todo o mundo”, disse.


Desde 1997, no LNLS, está aberto para uso em pesquisas externas um acelerador de elétrons de segunda geração. Atualmente, o laboratório está subordinado ao Centro Nacional de Pesquisa em Energia e Materiais (CNPEM) e conta com 16 estações experimentais, também chamadas linhas de luz, que atendem em torno de 500 grupos de pesquisa por ano.


Uma parte dos equipamentos das estações experimentais foi adquirida durante projetos apoiados pela Fapesp, como a linha de luz para biologia molecular estrutural (MX2) e equipamentos para a linha do wiggler supercondutor.


Único na América Latina, o síncrotron é capaz de emitir radiação de alto brilho em diversas frequências, desde infravermelho até raios X. Isso permite estudar a estrutura atômica que compõe os mais diversos materiais e descobrir como se distribuem espacialmente e como estão interligados.


“Para entender a diferença entre os raios X emitidos por uma máquina comum usada na medicina e a radiação emitida pelo síncrotron, podemos comparar o feixe de luz de uma lanterna com o de uma ponteira a laser, que tem divergência muito menor”, explicou Roque da Silva.


De acordo com o diretor do LNLS, a mesma analogia pode ser usada para comparar o feixe de fótons emitido por um acelerador de segunda e um de terceira geração.


A energia final dos elétrons será mais do que o dobro da atual, que é de 1,37 GeV (gigaelétron-volt). Além de gerar mais intensidade de luz, o Sirius também ampliará sua faixa de alcance para os raios X duros (o penúltimo no espectro eletromagnético, atrás dos raios gama). Isso permitirá penetrar estruturas mais espessas.


“Hoje, ao estudar as propriedades do aço, por exemplo, só é possível penetrar na camada mais superficial do material. Com o novo acelerador conseguiríamos atingir de fato o volume e aprender como os átomos estão organizados”, contou Roque da Silva.


A menor divergência do feixe de fótons, por sua vez, aumentará a resolução das imagens, possibilitando a realização de medidas de microscopia com precisão nanométrica. “Será possível gerar imagens tridimensionais de uma célula e de suas organelas”, contou.



Na fronteira


Segundo o diretor do LNLS, em julho ficará pronto o projeto executivo do novo acelerador, que contém todas as informações de arquitetura e infraestrutura necessárias para o início das obras. Estão previstas a construção de até 40 estações experimentais - quase o triplo da capacidade atual.


“O projeto conceitual está concluído. Originalmente ele já era competitivo em relação aos outros síncrotrons de terceira geração, mas o comitê internacional de avaliadores nos desafiou a fazer um projeto ainda mais arrojado. Agora ele traz uma série de inovações que o colocam, de fato, na fronteira tecnológica”, afirmou Roque da Silva.


Enquanto os demais equipamentos do tipo usam o sistema de eletroímãs, o Sirius será inteiramente baseado no sistema de ímãs permanentes, o que reduz a necessidade de cabos de alimentação.


“Também fizemos mudanças drásticas na rede magnética e na câmara de vácuo. O feixe de luz do Sirius estará entre os de maior brilho no mundo”, afirmou Roque da Silva.


O custo previsto do projeto, estimado para terminar em 2016, é de R$ 650 milhões. Até o momento, segundo Roque da Silva, o Ministério de Ciência, Tecnologia e Inovação (MCTI) já investiu cerca de R$ 55 milhões.


“O MCTI considera o Sirius como um dos projetos prioritários para o país e o apoio tem sido crescente. Mas também estamos buscando outros parceiros”, contou Roque da Silva.


O projeto também conta com apoio do governo do estado de São Paulo, que se comprometeu a fazer a desapropriação do terreno de 150 mil metros quadrados onde será construído o acelerador - ao lado das atuais instalações do LNLS.


“A construção do Sirius será, sem dúvida, uma das ações mais importantes do ponto de vista da internacionalização da ciência. O poder de nucleação de um laboratório desse porte é enorme”, avaliou Roque da Silva.

Mais Lidas De Hoje
veja Também
Bacia de Santos
Karoon conclui aquisição do FPSO Cidade de Itajaí
08/05/25
OTC HOUSTON 2025
Empresa brasileira é destaque na OTC com estudo inédito ...
08/05/25
OTC HOUSTON 2025
Tecnologia da brasileira Vidya está sendo usada em opera...
08/05/25
Taxa Selic
Aumento da Selic em 14,75% aponta riscos à indústria e à...
08/05/25
OTC HOUSTON 2025
OTC 2025, em Houston, conta com presenças da Tenenge e E...
07/05/25
Evento
Vendas de ingresso do Seminário de Gás Natural do IBP es...
07/05/25
OTC HOUSTON 2025
Comitiva sergipana em feira nos EUA se reúne com diretor...
07/05/25
Sergipe Oil & Gas 2025
SOG25 vai dar destaque ao potencial de Sergipe na produç...
07/05/25
OTC HOUSTON 2025
Petrobras, IBP, Sinaval e ApexBrasil fomentam novos negó...
07/05/25
Resultado
Vibra tem crescimento inédito no 1T25
07/05/25
Offshore
Descomissionamento de plataformas fixas em águas rasas a...
07/05/25
OTC HOUSTON 2025
Vesper, líder em Ventiladores e Exaustores industriais E...
07/05/25
OTC HOUSTON 2025
EPE destaca oportunidades de investimento no setor energ...
07/05/25
OTC HOUSTON 2025
PPSA anuncia revisão no volume a ser ofertado no 5º Leil...
06/05/25
OTC HOUSTON 2025
Brasil leva maior delegação estrangeira para feira de pe...
06/05/25
OTC HOUSTON 2025
Para divulgar o potencial energético do Rio de Janeiro, ...
06/05/25
Logística
Vast conclui milésima operação de transbordo de petróleo
06/05/25
OTC HOUSTON 2025
Fábio Mitidieri participa da abertura do Pavilhão Brasil...
06/05/25
Energia Eólica
Brasil e Países Baixos promovem seminário sobre energia ...
06/05/25
Etanol
ORPLANA reafirma compromisso com a governança e transpar...
06/05/25
Meio Ambiente
Aterro Zero: Refinaria de Mataripe conquista certificação
06/05/25
VEJA MAIS
Newsletter TN

Fale Conosco

Utilizamos cookies para garantir que você tenha a melhor experiência em nosso site. Se você continuar a usar este site, assumiremos que você concorda com a nossa política de privacidade, termos de uso e cookies.

22