Pesquisa e Desenvolvimento

Unesp e MIT desenvolvem sensor de gás tóxico

Capacidade é muito maior do que os sensores já usados.

Agência Fapesp
06/11/2013 17:08
Visualizações: 469 (0) (0) (0) (0)

 

Pesquisadores do Instituto de Química da Universidade Estadual Paulista (Unesp), campus de Araraquara, em parceria com colegas do Departamento de Ciência e Engenharia de Materiais do Massachusetts Institute of Technology (MIT), Estados Unidos, desenvolveram um material à base de óxido de estanho (SnO) com capacidade de detectar dióxido de nitrogênio (NO2) muito maior do que os sensores químicos já usados para identificar esse tipo de gás altamente tóxico, formado nas reações de combustão dos motores dos veículos.
Desenvolvido por meio de um projeto apoiado no âmbito de um acordo com o MIT, o material deverá resultar em uma patente compartilhada pelas duas instituições e foi descrito em um artigo publicado na edição de setembro da revista Sensors and Actuators B: Chemical.
“Enquanto a resistência elétrica dos materiais puros utilizados atualmente para detectar dióxido de nitrogênio aumenta entre 50 e 70 vezes na presença do gás tóxico, a do sensor que desenvolvemos apresenta um aumento de mil vezes. Esse é o sinal que utilizamos para medir a capacidade de detecção de um sensor”, disse Marcelo Ornaghi Orlandi, professor do Instituto de Química da Unesp de Araraquara e um dos autores do estudo, à Agência FAPESP. O projeto é coordenado por José Arana Varela, professor do IQ-Unesp e diretor-presidente do Conselho Técnico-Administrativo da Fundação de Amparo á Pesquisa de São Paulo (Fapesp).
O material desenvolvido pelos pesquisadores consiste em discos cristalinos de óxido de estanho – semelhantes a confetes de papel – em escala micrométrica (milionésima parte do metro).
Para desenvolver o material, eles utilizaram um processo chamado de redução carbotérmica, por meio do qual sintetizaram os discos na forma de óxido de estanho II, em vez da forma tradicional do óxido metálico – o dióxido de estanho IV (SnO2).
Ao mesmo tempo, conseguiram manter a estabilidade térmica e química, preservar a estrutura e fazer com que o material apresentasse maior sensibilidade ao dióxido de nitrogênio do que o SnO2 – um dos materiais mais estudados atualmente para aplicação como sensor do gás tóxico.
“O óxido de estanho é difícil de ser sintetizado porque é termicamente instável e, a temperaturas acima de 400 ºC, tende a se decompor”, explicou Orlandi. “Por meio de um controle fino, conseguimos pela primeira vez sintetizá-lo e, ao mesmo tempo, estabilizar suas propriedades térmicas e químicas e aumentar sua resposta sensora”.

Pesquisadores do Instituto de Química da Universidade Estadual Paulista (Unesp), campus de Araraquara, em parceria com colegas do Departamento de Ciência e Engenharia de Materiais do Massachusetts Institute of Technology (MIT), Estados Unidos, desenvolveram um material à base de óxido de estanho (SnO) com capacidade de detectar dióxido de nitrogênio (NO2) muito maior do que os sensores químicos já usados para identificar esse tipo de gás altamente tóxico, formado nas reações de combustão dos motores dos veículos.

Desenvolvido por meio de um projeto apoiado no âmbito de um acordo com o MIT, o material deverá resultar em uma patente compartilhada pelas duas instituições e foi descrito em um artigo publicado na edição de setembro da revista Sensors and Actuators B: Chemical.

“Enquanto a resistência elétrica dos materiais puros utilizados atualmente para detectar dióxido de nitrogênio aumenta entre 50 e 70 vezes na presença do gás tóxico, a do sensor que desenvolvemos apresenta um aumento de mil vezes. Esse é o sinal que utilizamos para medir a capacidade de detecção de um sensor”, disse Marcelo Ornaghi Orlandi, professor do Instituto de Química da Unesp de Araraquara e um dos autores do estudo, à Agência FAPESP. O projeto é coordenado por José Arana Varela, professor do IQ-Unesp e diretor-presidente do Conselho Técnico-Administrativo da Fundação de Amparo á Pesquisa de São Paulo (Fapesp).

O material desenvolvido pelos pesquisadores consiste em discos cristalinos de óxido de estanho – semelhantes a confetes de papel – em escala micrométrica (milionésima parte do metro).

Para desenvolver o material, eles utilizaram um processo chamado de redução carbotérmica, por meio do qual sintetizaram os discos na forma de óxido de estanho II, em vez da forma tradicional do óxido metálico – o dióxido de estanho IV (SnO2).

Ao mesmo tempo, conseguiram manter a estabilidade térmica e química, preservar a estrutura e fazer com que o material apresentasse maior sensibilidade ao dióxido de nitrogênio do que o SnO2 – um dos materiais mais estudados atualmente para aplicação como sensor do gás tóxico.

“O óxido de estanho é difícil de ser sintetizado porque é termicamente instável e, a temperaturas acima de 400 ºC, tende a se decompor”, explicou Orlandi. “Por meio de um controle fino, conseguimos pela primeira vez sintetizá-lo e, ao mesmo tempo, estabilizar suas propriedades térmicas e químicas e aumentar sua resposta sensora”.

 

Mais Lidas De Hoje
veja Também
Evento
Fenasucro & Agrocana 2025 reforça compromisso ambiental ...
10/06/25
Internacional
Petrobras apresenta declaração de interesse em blocos ex...
10/06/25
Firjan
Edição especial do Anuário do Petróleo no Rio, da Firjan...
09/06/25
E&P
ANP publica painel dinâmico de atividades e investimento...
09/06/25
Bahia Oil & Gas Energy 2025
Bahia Oil & Gas Energy consolida sua relevância para o setor
09/06/25
Mercado
ANP altera formato para acompanhamento ao vivo das reuni...
09/06/25
Reconhecimento
Posidonia conquista Selo Ouro no Programa Brasileiro GHG...
09/06/25
Nota
IBP alerta governo federal: aumento na alíquota de Parti...
09/06/25
Etanol
Anidro cai 3,65% e hidratado recua 2,33% na quarta seman...
09/06/25
Parceria
BRAVA Energia anuncia parceria e venda de 50% de infraes...
06/06/25
Negócio
Vallourec finaliza a aquisição da Thermotite do Brasil
06/06/25
Apoio Offshore
CBO fecha 2024 com expansão da frota, avanços em sustent...
06/06/25
Etanol
ORPLANA promove encontros com associações para esclarece...
06/06/25
Firjan
Receitas do petróleo não suportam mais taxas e inseguran...
06/06/25
Gás Natural
TBG reduz tarifas do Gasbol em até 28%
06/06/25
Hidrogênio
Vallourec obtém qualificação de sua solução de armazenam...
06/06/25
Amazônia
FGV Energia e Petrobras firmam parceria para geração de ...
06/06/25
Transição Energética
BNDES, Petrobras e Finep lançam edital para FIP em trans...
05/06/25
Pré-Sal
Shell aumentará participação no projeto operado de Gato ...
05/06/25
Biometano
Grupo de trabalho da ANP conclui estudos sobre regulamen...
05/06/25
Bahia Oil & Gas Energy 2025
Inovação no DNA: Como a Comquality vem revolucionando o ...
04/06/25
VEJA MAIS
Newsletter TN

Fale Conosco

Utilizamos cookies para garantir que você tenha a melhor experiência em nosso site. Se você continuar a usar este site, assumiremos que você concorda com a nossa política de privacidade, termos de uso e cookies.

22